
2020-11-16

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math. LEL

Prof. Hiren Patel, Ph.D., P.Eng.

Prof. Werner Dietl, Ph.D.

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

A linked list with a list-
size member variable

2
Linked lists with with a list-size member variable

Outline

• In this lesson, we will:

– Describe how to add a member variable to record the size

– See that there are superior ways of authoring code

– Explain how leaving an object in an inconsistent state is something
that must be minimized in time

3
Linked lists with with a list-size member variable

Initializing the list size

• Currently, it takes a loop to count the number of nodes in a linked list

– It should be possible to track the list size with a member variable

• Such a member variable should be:

– Initially set to zero, as the linked list is empty

– This member variable will only ever be modified in any member
function that changes the number of nodes in a linked list:

push_front(…);

pop_front();

clear();

– The clear() member function already calls pop_front(),

so we need only consider the first two

4
Linked lists with with a list-size member variable

Initializing the list size

• First, we add the member variable
class Linked_list {

public:

// Public constructors, member functions, and destructor

private:

Node *p_list_head_;

std::size_t list_size_;

};

• An initial linked list is empty, so the initial size is zero
Linked_list::Linked_list():

p_list_head_{ nullptr },

list_size_{ 0 } {

// Empty constructor

}

1 2

3 4

2020-11-16

2

5
Linked lists with with a list-size member variable

Simplifying push front

• Next, we must modify any function changing the number of nodes
in the linked list:

void Linked_list::push_front(double new_value) {

p_list_head_ = new Node{ new_value, p_list_head_ };

++list_size_;

}

void Linked_list::pop_front() {

if (!empty()) {

Node *p_old_head{ p_list_head_ };

p_list_head_ = p_list_head_->p_next_node();

--list_size_;

delete p_old_head;

p_old_head = nullptr;

}

}

6
Linked lists with with a list-size member variable

Popping the front when not empty

• Note that all member variables are changed, as much as possible:

– In the order they are defined

– In the closest possible proximity to each other

• This allows other programmers examining the class to:

– Become more comfortable and familiar with your design

• This helps when you make a mistake

– For example, forgetting to update one specific member variable

• It helps when adding more member variables:

– Anywhere that one member variable is changing may indicate
where a new member variable may have to be updated

– Avoid making mistakes by having as few statements as possible that
leave the linked list be in an inconsistent state

• That is, where, for example, the number of actual nodes in the
linked list does not match the member variable list_size_

7
Linked lists with with a list-size member variable

Simplifying push front

• Less ideal would be to switch order at a whim,
and to change some member variables almost as an afterthought

void Linked_list::push_front(double new_value) {

++list_size_;

p_list_head_ = new Node{ new_value, p_list_head_ };

}

void Linked_list::pop_front() {

if (!empty()) {

Node *p_old_head{ p_list_head_ };

p_list_head_ = p_list_head_->p_next_node();

delete p_old_head;

p_old_head = nullptr;

--list_size_;

}

}

8
Linked lists with with a list-size member variable

Simplifying push front

• You can group and highlight statements changing the state:
void Linked_list::push_front(double new_value) {

// Begin critical code:

p_list_head_ = new Node{ new_value, p_list_head_ };

++list_size_;

// End critical code

}

void Linked_list::pop_front() {

if (!empty()) {

Node *p_old_head{ p_list_head_ };

// Begin critical code:

p_list_head_ = p_list_head_->p_next_node();

--list_size_;

// End critical code

delete p_old_head;

p_old_head = nullptr;

}

}

5 6

7 8

2020-11-16

3

9
Linked lists with with a list-size member variable

Conclusions

• While it may seem all code is “okay” so long as it gets the job done,
some approaches are better that others

• Programmers reading your code will be thankful,
even if they have no clue who you are

– You will be thankful yourself,
especially if you haven’t looked at your own code for over a month

10
Linked lists with with a list-size member variable

Summary

• Following this lesson, you now

– Know that adding features can be straight-forward

– Understand that adding a feature that significantly reduces the run-
time can be very beneficial

– Understand that how you code changes is relevant:

• It is critical to leave the object in inconsistent states for as short a
period as possible

11
Linked lists with with a list-size member variable

References

[1] https://en.wikipedia.org/wiki/Linked_list

[2] https://en.wikipedia.org/wiki/Information_hiding#Encapsulation

12
Linked lists with with a list-size member variable

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

9 10

11 12

2020-11-16

4

13
Linked lists with with a list-size member variable

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

13

